Mechanics of Thin-walled Structures

Prof. Adam Dacko, PhD, DSc
Warsaw University of Technology

1. Basic concepts of mechanics of structures
a. Stress
b. Strain
c. Moment of inertia
i. First (static) moment of area (static)
ii. Second moment of area (inertia)
2. Thin-walled structures introduction
3. Beams
a. Bending of beams
i. Shear centre
ii. Open section beams

- First (static) moment of inertia approach
- Function approach
iii. Closed section beams
b. Torsion of beams
i. Free torsion
ii. Constrained torsion

4. Plates and shells (2D structures)

5. Buckling
a. Analytical approach
b. Energy approach
c. Buckling of columns
d. Buckling of plates
e. Buckling of shells

Aircraft Structures for Engineering Students

Fourth Edition

Stress, Strain, Hooke`s law, moments of area (inertia)

State of stress

State of stress

3D body is in equilibrum under action of externally applied forces P.

P - forces
O - point in the body
$\delta \mathrm{P}$ - resultant force
nn - plane which divides the body into two parts
$\delta \mathrm{A}$ - small area

State of stress

3D body is in equilibrum under action of externally applied forces P.

P-forces
O - point in the body
$\delta \mathrm{P}$ - resultant force
nn - plane which divides the body into two parts
$\delta \mathrm{A}$ - small area

State of stress

3D body is in equilibrum under action of externally applied forces P.

P-forces
O - point in the body

$$
\text { Stress }=\lim _{\delta A \rightarrow 0} \frac{\delta P}{\delta A}
$$

The direction of $\delta \mathrm{P}$ is not normal to the area $\delta \mathrm{A}$, in which case it is usual to resolve $\delta \mathrm{P}$ into two components:
δP_{n} - normal to the plane
δP_{s} - acting in the plane itself
Plane conatining $\delta \mathrm{P}$ is perpendicular to $\delta \mathrm{A}$. The stresses associated with the abovementioned components are:

Normal stress or direct stress

$$
\sigma=\lim _{\delta A \rightarrow 0} \frac{\delta P_{n}}{\delta A}
$$

Shear stress

$$
\tau=\lim _{\delta A \rightarrow 0} \frac{\delta P_{s}}{\delta A}
$$

State of stress

3D body is in equilibrum under action of externally applied forces P.

P-forces
O - point in the body
$\delta \mathrm{P}$ - resultant force
nn - plane which divides the body into two parts
$\delta \mathrm{A}$ - small area

State of stress

The resultant force $\delta \mathrm{P}$ may be resolved into the following components:

- one normal component
- two in-plane components of shear stress

State of stress

What is the stress?
\rightarrow vector
\rightarrow tensor

State of stress

What is the stress?
\rightarrow vector
\rightarrow tensor

The following elements must be specified to determine the stress:

- magnitude
- direction
- plane on which stress acts

$$
\text { Stress }=\lim _{\delta A \rightarrow 0} \frac{\delta P}{\delta A}
$$

State of stress

What is the unit of stress?

$$
\left[\frac{N}{m^{2}}\right]=[P a]
$$

State of stress

Normal and shear stresses:

Generally, except in cases of uniform stress, the normal and shear stresses on opposite faces of an element are not equal but differ by small amounts.

State of stress

After solving, the equations of equilibrum can be written:

$$
\left.\begin{array}{l}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+X=0 \\
\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \tau_{y z}}{\partial z}+Y=0 \\
\frac{\partial \sigma_{z}}{\partial z}+\frac{\partial \tau_{z x}}{\partial x}+\frac{\partial \tau_{z y}}{\partial y}+Z=0
\end{array}\right\}
$$

X, Y, Z - body forces coming from gravitational forces and inertia effects

State of stress

After solving, the equations of equilibrum can be written:

$$
\left.\begin{array}{l}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+X=0 \\
\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y x}}{\partial x}+\frac{\partial \tau_{y z}}{\partial z}+Y=0 \\
\frac{\partial \sigma_{z}}{\partial z}+\frac{\partial \tau_{z x}}{\partial x}+\frac{\partial \tau_{z y}}{\partial y}+Z=0
\end{array}\right\}
$$

X, Y, Z - body forces coming from gravitational forces and inertia effects
2D case - plane stress:

$$
\left.\begin{array}{l}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+X=0 \\
\frac{\partial \sigma_{y}}{\partial y}+\frac{\partial \tau_{y x}}{\partial x}+Y=0
\end{array}\right\}
$$

$$
\begin{gathered}
\sigma_{z}=0 \\
\boldsymbol{\tau}_{\boldsymbol{x z}}=0 \\
\boldsymbol{\tau}_{\boldsymbol{y z}}=0
\end{gathered}
$$

State of stress

Mohr's circle of stress

(a)

State of strain

State of strain

Longitudinal or direct strains:
Shear strains:

$$
\left.\varepsilon=\lim _{L \rightarrow 0} \frac{\Delta L}{L} \quad \varepsilon_{x}=\frac{\partial u}{\partial x}, \begin{array}{rl}
\gamma_{x z} & =\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z} \\
\varepsilon_{y} & =\frac{\partial v}{\partial y} \\
\varepsilon_{z} & =\frac{\partial w}{\partial z}
\end{array}\right\} \quad \gamma_{x y}=\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y},
$$

Stress - strain relations 1-D case

$$
\varepsilon_{x}=\frac{\sigma_{x}}{E} \quad \varepsilon_{y}=-v \frac{\sigma_{x}}{E} \quad \varepsilon_{z}=-v \frac{\sigma_{x}}{E}
$$

Stress - strain relations 3-D case

$$
\left.\begin{array}{rl}
\varepsilon_{x} & =\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] \\
\varepsilon_{y} & =\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right] \\
\varepsilon_{z} & =\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]
\end{array}\right\}
$$

$$
\begin{aligned}
\sigma_{x} & =\frac{\nu E}{(1+v)(1-2 \nu)} e+\frac{E}{(1+\nu)} \varepsilon_{x} \\
\sigma_{y} & =\frac{\nu E}{(1+v)(1-2 \nu)} e+\frac{E}{(1+\nu)} \varepsilon_{y} \\
\sigma_{z} & =\frac{v E}{(1+v)(1-2 \nu)} e+\frac{E}{(1+v)} \varepsilon_{z} \\
e & =\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}
\end{aligned}
$$

Stress - strain relations 2-D case

$$
\left.\begin{array}{rlrl}
\sigma_{x} & =\frac{E}{1-v^{2}}\left(\varepsilon_{x}+v \varepsilon_{y}\right) \\
\sigma_{y} & =\frac{E}{1-v^{2}}\left(\varepsilon_{y}+v \varepsilon_{x}\right)
\end{array}\right) \quad \begin{aligned}
& =\tau / G \\
&
\end{aligned}
$$

Second moment of area (inertia)

$$
\begin{gathered}
I_{x x}=\int_{A} y^{2} \mathrm{~d} A=\int_{-d / 2}^{d / 2} b y^{2} \mathrm{~d} y=b\left[\frac{y^{3}}{3}\right]_{-d / 2}^{d / 2} \\
I_{x x}=\frac{b d^{3}}{12}
\end{gathered}
$$

Second moment of area (inertia)

$$
\begin{gathered}
I_{x x}=\int_{A} y^{2} \mathrm{~d} A=\int_{-d / 2}^{d / 2} 2\left(\frac{d}{2} \cos \theta\right) y^{2} \mathrm{~d} y \\
I_{x x}=\int_{-\pi / 2}^{\pi / 2} d \cos \theta\left(\frac{d}{2} \sin \theta\right)^{2} \frac{d}{2} \cos \theta \mathrm{~d} \theta \\
I_{x x}=\frac{d^{4}}{8} \int_{-\pi / 2}^{\pi / 2} \cos ^{2} \theta \sin ^{2} \theta \mathrm{~d} \theta \\
I_{x x}=\frac{\pi d^{4}}{64}
\end{gathered}
$$

Product second moment of area (inertia)

$$
I_{x y}=\int_{A} x y \mathrm{~d} A
$$

Parallel axes theorem (Steiner principle)

$$
I_{\mathrm{N}}=I_{\mathrm{C}}+A b^{2}
$$

Aproximations for Thin-Walled sections

$$
I_{x x}=2\left[\frac{(b+t / 2) t^{3}}{12}+\left(b+\frac{t}{2}\right) t h^{2}\right]+t \frac{[2(h-t / 2)]^{3}}{12}
$$

$$
\begin{gathered}
I_{x x}=2\left[\frac{(b+t / 2) t^{3}}{12}+\left(b+\frac{t}{2}\right) t h^{2}\right]+\frac{t}{12}\left[(2)^{3}\left(h^{3}-3 h^{2} \frac{t}{2}+3 h \frac{t^{2}}{4}-\frac{t^{3}}{8}\right)\right] \\
I_{x x}=2 b t h^{2}+t \frac{(2 h)^{3}}{12}
\end{gathered}
$$

Aproximations for Thin-Walled sections

$$
\begin{gathered}
I_{x x}=\int_{0}^{\pi r} t y^{2} \mathrm{~d} s \\
I_{x x}=\int_{0}^{\pi} t(r \cos \theta)^{2} r \mathrm{~d} \theta \\
I_{x x}=\frac{\pi r^{3} t}{2}
\end{gathered}
$$

Thin-Walled sections - inclined walls

$$
I_{x x}=2 \int_{0}^{a / 2} t y^{2} \mathrm{~d} s=2 \int_{0}^{a / 2} t(s \sin \beta)^{2} \mathrm{~d} s
$$

$$
\begin{aligned}
& I_{x x}=\frac{a^{3} t \sin ^{2} \beta}{12} \\
& I_{y y}=\frac{a^{3} t \cos ^{2} \beta}{12} \\
& I_{x y}=\frac{a^{3} t \sin 2 \beta}{24}
\end{aligned}
$$

